博客
关于我
KNN —— 基本介绍与简要实现
阅读量:347 次
发布时间:2019-03-04

本文共 522 字,大约阅读时间需要 1 分钟。

KNN算法

介绍

KNN(K-Nearest Neighbors)是一种经典的分类算法,其基本思想是通过找到某个样本的K个最近邻来预测其类别。这种方法在数据局部进行分类,属于局部方法。

K值的选择至关重要,通常K取奇数以避免平票。例如,在二分类问题中,K常设为1、3、5等。算法步骤包括计算测试点与所有训练点的距离、排序后选择前K个最近点,并根据这些点的类别分布归类测试点。

实现步骤

  • 计算距离:对于每个测试点,计算其到所有训练点的欧氏距离。
  • 排序:对所有距离按从小到大排序,找出最近的K个点。
  • 统计类别:统计前K个最近点中各类别的数量,选择数量最多的类别归类测试点。
  • 案例分析

    以鸢尾花数据集为例,数据包含四个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。类别分为山鸢尾花(0)、变色鸢尾花(1)、维吉尼亚鸢尾花(2)。此处采用K=5进行分类。

    通过上述算法,实现分类任务。代码使用sklearn中的鸢尾花数据集,切分训练集和测试集,应用KNN算法进行预测。最终结果表现在分类报告中,展示准确率、召回率及F1值等评估指标。

    该方法具有高效性和简单性,但适用场景主要限于小规模数据集。对于大规模数据集,可能需要降维或使用其他优化技术以提高性能。

    转载地址:http://hehe.baihongyu.com/

    你可能感兴趣的文章
    OAuth2.0四种模式的详解
    查看>>
    OAuth2授权码模式详细流程(一)——站在OAuth2设计者的角度来理解code
    查看>>
    oauth2登录认证之SpringSecurity源码分析
    查看>>
    OAuth2:项目演示-模拟微信授权登录京东
    查看>>
    OA系统多少钱?OA办公系统中的价格选型
    查看>>
    OA系统选型:选择好的工作流引擎
    查看>>
    OA让企业业务流程管理科学有“据”
    查看>>
    OA项目之会议通知(查询&是否参会&反馈详情)
    查看>>
    Vue.js 学习总结(13)—— Vue3 version 计数介绍
    查看>>
    OA项目之我的会议(会议排座&送审)
    查看>>
    OA项目之我的会议(查询)
    查看>>
    OA项目之我的审批(会议查询&会议签字)
    查看>>
    OA项目之项目简介&会议发布
    查看>>
    ObjC的复制操作
    查看>>
    Object c将一个double值转换为时间格式
    查看>>
    object detection之Win10配置
    查看>>
    object detection训练自己数据
    查看>>
    object detection错误Message type "object_detection.protos.SsdFeatureExtractor" has no field named "bat
    查看>>
    object detection错误之Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
    查看>>
    object detection错误之no module named nets
    查看>>