博客
关于我
KNN —— 基本介绍与简要实现
阅读量:347 次
发布时间:2019-03-04

本文共 522 字,大约阅读时间需要 1 分钟。

KNN算法

介绍

KNN(K-Nearest Neighbors)是一种经典的分类算法,其基本思想是通过找到某个样本的K个最近邻来预测其类别。这种方法在数据局部进行分类,属于局部方法。

K值的选择至关重要,通常K取奇数以避免平票。例如,在二分类问题中,K常设为1、3、5等。算法步骤包括计算测试点与所有训练点的距离、排序后选择前K个最近点,并根据这些点的类别分布归类测试点。

实现步骤

  • 计算距离:对于每个测试点,计算其到所有训练点的欧氏距离。
  • 排序:对所有距离按从小到大排序,找出最近的K个点。
  • 统计类别:统计前K个最近点中各类别的数量,选择数量最多的类别归类测试点。
  • 案例分析

    以鸢尾花数据集为例,数据包含四个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。类别分为山鸢尾花(0)、变色鸢尾花(1)、维吉尼亚鸢尾花(2)。此处采用K=5进行分类。

    通过上述算法,实现分类任务。代码使用sklearn中的鸢尾花数据集,切分训练集和测试集,应用KNN算法进行预测。最终结果表现在分类报告中,展示准确率、召回率及F1值等评估指标。

    该方法具有高效性和简单性,但适用场景主要限于小规模数据集。对于大规模数据集,可能需要降维或使用其他优化技术以提高性能。

    转载地址:http://hehe.baihongyu.com/

    你可能感兴趣的文章
    Netty源码解读
    查看>>
    Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
    查看>>
    Netty相关
    查看>>
    Netty遇到TCP发送缓冲区满了 写半包操作该如何处理
    查看>>
    Netty:ChannelPipeline和ChannelHandler为什么会鬼混在一起?
    查看>>
    Netty:原理架构解析
    查看>>
    Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
    查看>>
    Network Sniffer and Connection Analyzer
    查看>>
    Network 灰鸽宝典【目录】
    查看>>
    NetworkX系列教程(11)-graph和其他数据格式转换
    查看>>
    Networkx读取军械调查-ITN综合传输网络?/读取GML文件
    查看>>
    network小学习
    查看>>
    Netwox网络工具使用详解
    查看>>
    Net与Flex入门
    查看>>
    net包之IPConn
    查看>>
    Net操作配置文件(Web.config|App.config)通用类
    查看>>
    Neutron系列 : Neutron OVS OpenFlow 流表 和 L2 Population(7)
    查看>>
    New Relic——手机应用app开发达人的福利立即就到啦!
    查看>>
    NFinal学习笔记 02—NFinalBuild
    查看>>
    NFS
    查看>>